Antiinflammatory effects of the ETS factor ERG in endothelial cells are mediated through transcriptional repression of the interleukin-8 gene.
نویسندگان
چکیده
ERG (Ets-related gene) is an ETS transcription factor that has recently been shown to regulate a number of endothelial cell (EC)-restricted genes including VE-cadherin, von Willebrand factor, endoglin, and intercellular adhesion molecule-2. Our preliminary data demonstrate that unlike other ETS factors, ERG exhibits a highly EC-restricted pattern of expression in cultured primary cells and several adult mouse tissues including the heart, lung, and brain. In response to inflammatory stimuli, such as tumor necrosis factor-alpha, we observed a marked reduction of ERG expression in ECs. To further define the role of ERG in the regulation of normal EC function, we used RNA interference to knock down ERG. Microarray analysis of RNA derived from ERG small interfering RNA- or tumor necrosis factor-alpha-treated human umbilical vein (HUV)ECs revealed significant overlap (P<0.01) in the genes that are up- or downregulated. Of particular interest to us was a significant change in expression of interleukin (IL)-8 at both protein and RNA levels. Exposure of ECs to tumor necrosis factor-alpha is known to be associated with increased neutrophil attachment. We observed that knockdown of ERG in HUVECs is similarly associated with increased neutrophil attachment compared to control small interfering RNA-treated cells. This enhanced adhesion could be blocked with IL-8 neutralizing or IL-8 receptor blocking antibodies. ERG can inhibit the activity of the IL-8 promoter in a dose dependent manner. Direct binding of ERG to the IL-8 promoter in ECs was confirmed by chromatin immunoprecipitation. In summary, our findings support a role for ERG in promoting antiinflammatory effects in ECs through repression of inflammatory genes such as IL-8.
منابع مشابه
The Transcription Factor Erg Controls Endothelial Cell Quiescence by Repressing Activity of Nuclear Factor (NF)-κB p65*
The interaction of transcription factors with specific DNA sequences is critical for activation of gene expression programs. In endothelial cells (EC), the transcription factor NF-κB is important in the switch from quiescence to activation, and is tightly controlled to avoid excessive inflammation and organ damage. Here we describe a novel mechanism that controls the activation of NF-κB in EC. ...
متن کاملCharacterisation of the tumour necrosis factor (TNF)-(alpha) response elements in the human ICAM-2 promoter.
ICAM-2 is a cell surface adhesion molecule constitutively expressed on the endothelium, involved in leukocyte recruitment into tissues. We recently showed that pro-inflammatory cytokines tumour necrosis factor (TNF)-(alpha) and interleukin (IL)-1(beta) down-regulate ICAM-2 expression at the transcriptional level. Here we investigate the elements in the ICAM-2 promoter required for the TNF-(alph...
متن کاملGene Expression Changes in Pomegranate Peel Extract-Treated Triple-Negative Breast Cancer Cells
Background: Triple-negative breast cancer (TNBC) is treated with highly aggressive non-targeted chemotherapies. Safer and more effective therapeutic approaches than those currently in use are needed. Natural pomegranate peel extract (PPE) has recently been found to inhibit breast cancer progression; however, its mechanisms of action remain unclear. We hypothesized that transcriptional chan...
متن کاملETS-dependent regulation of a distal Gata4 cardiac enhancer.
The developing heart contains an inner tube of specialized endothelium known as endocardium, which performs multiple essential functions. In spite of the essential role of the endocardium in heart development and function, the transcriptional pathways that regulate its development remain largely undefined. GATA4 is a zinc finger transcription factor that is expressed in multiple cardiovascular ...
متن کاملELK3 Suppresses Angiogenesis by Inhibiting the Transcriptional Activity of ETS-1 on MT1-MMP
Ets transcription factors play important roles in vasculogenesis and angiogenesis. Knockout of the Ets gene family members in mice resulted in disrupted angiogenesis and malformed vascular systems. In this study, the role and mechanism of ELK3, an Ets factor, in angiogenesis was investigated using ELK3-specific siRNA in human vascular endothelial cells (HUVECs) and in vivo implantation assay. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 104 9 شماره
صفحات -
تاریخ انتشار 2009